Phytoremediation of toxic elemental and organic pollutants
Richard B Meagher

Phytoremediation is the use of plants to extract, sequester, and/or detoxify pollutants. Phytoremediation is widely viewed as the ecologically responsible alternative to the environmentally destructive physical remediation methods currently practiced. Plants have many endogenous genetic, biochemical, and physiological properties that make them ideal agents for soil and water remediation. Significant progress has been made in recent years in developing native or genetically modified plants for the remediation of environmental contaminants. Because elements are immutable, phytoremediation strategies for radionuclides and heavy metal pollutants focus on hyperaccumulation above-ground. In contrast, organic pollutants can potentially be completely mineralized by plants.

Introduction

Phytoremediation is a newly evolving field of science and technology that uses plants to clean-up polluted soil, water, or air [1–3]. With the help of genetic engineering, plant researchers have developed new technologies that allow them to produce plants with the desired endogenous, biochemical, and physiological properties that make them ideal agents for soil and water remediation. Significant progress has been made in recent years in developing native or genetically modified plants for the remediation of environmental contaminants. Because elements are immutable, phytoremediation strategies for radionuclides and heavy metal pollutants focus on hyperaccumulation above-ground. In contrast, organic pollutants can potentially be completely mineralized by plants.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS</td>
<td>ATP sulfurylase</td>
</tr>
<tr>
<td>FRO2</td>
<td>ferric chelate reductase</td>
</tr>
<tr>
<td>GHP</td>
<td>glutathione-conjugate transporter</td>
</tr>
<tr>
<td>GS</td>
<td>glutathione synthase</td>
</tr>
<tr>
<td>GSH</td>
<td>glutathione</td>
</tr>
<tr>
<td>GTN</td>
<td>glycerol tannate (or nitrolycerin)</td>
</tr>
<tr>
<td>IRTR</td>
<td>iron transporter 1</td>
</tr>
<tr>
<td>MT</td>
<td>metallothionein</td>
</tr>
<tr>
<td>PAH</td>
<td>polycyclic aromatic hydrocarbon</td>
</tr>
<tr>
<td>PC</td>
<td>phytocellular</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PCS</td>
<td>phytocellular synthase</td>
</tr>
<tr>
<td>PS</td>
<td>phytocellular synthase</td>
</tr>
<tr>
<td>TCE</td>
<td>trichloroethylene</td>
</tr>
<tr>
<td>TNT</td>
<td>tetrachloroethylene</td>
</tr>
<tr>
<td>ZIP</td>
<td>zinc transporter</td>
</tr>
</tbody>
</table>

Phytoremediation of elemental pollutants

Adsortion

Root surfaces, which have evolved specifically to adsorb elemental nutrients from soil and pore water, have extraordinary large surface areas [5] and high-affinity chemical receptors [6–11]. In the process of adsorption, root surfaces bind many elemental pollutants as well as nutrients. For example, Indian mustard (Brassica juncea) can rapidly concentrate Cd(II), Ni(II), Pb(II), and Sr(II) into root tissues at levels 500-times greater than those in the liquid medium. It is important to distinguish between the phytoremediation of elemental and organic pollutants at the outset. Elemental pollutants are essentially immutable by any biological or physical process short of nuclear fusion and fission, and thus their remediation presents special scientific and technical problems. Elemental pollutants include toxic heavy metals and radionuclides, such as arsenic, cadmium, cesium, chromium, lead, mercury, strontium, technetium, tritium, and uranium. With a few notable exceptions, the best scenarios for the phytoremediation of elemental pollutants involve plants extracting and translocating a toxic cation or oxyanion to above-ground tissues for later harvest; converting the element to a less toxic chemical species (i.e. transformation); or at the very least sequestering the element in roots to prevent leaching from the site.

For organic pollutants, the goal of phytoremediation is to completely mineralize them into relatively non-toxic constituents, such as carbon dioxide, nitrate, chlorine, and ammonia [4]. Organic pollutants that are potentially important targets for phytoremediation include polychlorinated biphenyls (PCBs) such as dioxin; polycyclic aromatic hydrocarbons (PAHs) such as benzopyrene; nitroaromatics such as trinitrotoluene (TNT); and linear halogenated hydrocarbons such as trichloroethylene (TCE). Many of these compounds are not only toxic and teratogenic, but also carcinogenic.

Phytoremediation of organic pollutants

Adsortion

Root surfaces, which have evolved specifically to adsorb elemental nutrients from soil and pore water, have extraordinary large surface areas [5] and high-affinity chemical receptors [6–11]. In the process of adsorption, root surfaces bind many elemental pollutants as well as nutrients. For example, Indian mustard (Brassica juncea) can rapidly concentrate Cd(II), Ni(II), Pb(II), and Sr(II) into root tissues at levels 500-times greater than those in the liquid medium.
in which they are growing [6,7]. Sunflower roots concentrate uranium 30,000-fold from water contaminated with dilute but highly toxic concentrations of this element [8]. Similarly, tobacco roots exposed to low concentrations (1–5 ppb) of ionic mercury (Hg[II]) in liquid medium lowered the Hg[II] concentration of the medium nearly 100-fold in a matter of hours [9]. In soils, of course, these adsorption processes are orders of magnitude less efficient than in liquid medium [10,11] because root surfaces must compete for nutrients with diverse particulate soil materials (e.g. clays and humic acids).

Transport

Although research into the molecular physiology of plant transport systems for elemental nutrients and pollutants is still in its infancy, excellent initial information is available on two related subfamilies of ZINC TRANSPORTER (ZIP) proteins that are involved in Zn(II) and Fe(II) uptake [12•,13•,14••]. Among other sequence motifs, these two subfamilies share an extramembranal metal-binding motif HXX(HX)H. The ZIP subfamily, represented by the Arabidopsis ZIP1, ZIP2, and ZIP3 genes, complement yeast transport mutants that show Zn[II] deficiency. In addition, ZIP1 and ZIP3 are expressed in roots upon induction by zinc deficiency, and these genes undoubtedly play a direct role in zinc uptake from soil [15•]. The Zn[II] transport activity of these three proteins is inhibited by Mn(II), Co(II), Cd(II), and/or Cu(II), indicating that ZIP proteins may transport toxic metals as well as nutrients. From the other ZIP subfamily, the IRON TRANSPORTER 1 (ITR1) gene of Arabidopsis is a good example of an iron (Fe[II]) transporter. ITR1 is expressed in roots, increases expression levels upon iron deficiency, and is required for normal iron utilization [16]. It complements iron-uptake functions in yeast mutants that have deficient iron uptake [16]. The ITR1 protein can actively and efficiently transport Cd(II) and Zn[II] [17••,18]. It has long been recognized that iron-starved plants take up higher levels of other potentially toxic metal ions (e.g. Cd[II], Mn[II] and Zn[II]). Thus, it seems likely that ZIP1, ZIP2, ZIP3, ITR1, and related inducible transporters provide the pathway through which metal ions are actively taken up by plants experiencing nutrient deficiency and stress (as indicated in Figure 1).

The solubility and transport of many heavy metals into roots is increased in acidic soils, which creates special toxicity problems. Even nutrient metals, such as Al(III) and Mn(II), reach toxic levels in plants when the soil pH falls much below 5.0. Plants and soils can, however, be manipulated to increase or decrease the uptake of pollutants under otherwise toxic acidic conditions, and these strategies could form the basis of some phytoremediation techniques. In developed countries, the traditional agricultural approach to reducing cation toxicity is to chemically raise soil pH every few years. On marginal lands, in forests, and in Third World agriculture, however, this strategy is too expensive. As an alternative, plants adapted to accommodate low soil pH or high metal ion toxicity should grow more efficiently and simultaneously improve these sites. One class of Arabidopsis mutant plants selected for Al(III) tolerance is capable of increasing the availability of Al(III) and other toxic cations to plant roots. Although the cost of this trait in terms of plant yield is unknown, it is likely that appropriate crop and forest species could be used to adjust soil acidity on a larger scale.

The natural variation of maize genotypes in resistance to Al(III) toxicity has been used to identify strategies other than pH adjustment that have broader implications for phytoremediation [20]. On exposure to Al(III) in acidic soils, one naturally resistant maize genotype is stimulated to release citrate from roots into the medium [20]; this does not happen in Al(III) sensitive genotypes. Citrate is a tri-carboxylic acid that chelates many metals and specifically complexes with Al(III), preventing its uptake (Figure 1). A second class of Al(III)-resistant Arabidopsis mutants helped to confirm the role of this simple organic acid in transport [21••]. These mutants constitutively secrete large quantities of citrate into their medium and again take up less Al(III). The capacity of citrate to block Al(III) uptake has been confirmed independently in transgenic tobacco and papaya plants that over-expressed a bacterial gene for citrate synthetase [22]. Citrate synthetase is a Kreb's cycle enzyme that combines an acetyl group and oxaloacetic acid to form citrate. The excess citrate in these transgenic plants appears to chelate toxic Al(III) and provide a much greater resistance to Al(III) toxicity. In contrast to the behavior of citrate, most organic chelators increase metal ion uptake and translocation in plants. In response to nutrient metal ion deficiencies, plants secrete phytosiderophores such as mugenic and avenic acids [23,24]. These metal-chelators increase the bioavailability of metals that are otherwise tightly bound to the soil and help to carry them into plant tissues. Synthetic metal-chelators such as ethylene diamine tetra-acetic acid (EDTA) is added to lead (Pb[II])- contaminated soils, there is a 100-fold increase in metals uptake and transport of the lead–EDTA-chelate (Figure 1) into stems and leaves [25,26,27••]. Thus, in contrast to the role of citric acid in reducing aluminum uptake, plants altered to increase their secretion of particular organic acids will probably demonstrate increased uptake and translocation of metal pollutants (see histidine section below).

Hyperaccumulation

Because elemental pollutants are immutant and cannot be made completely non-toxic, the final goal of most phytoremediation strategies is efficient hyperaccumulation in harvestable above-ground tissues. Hyperaccumulation is usually defined as the concentration of a metal ion to >0.1% of the dry weight of the plant [28]. At these concentrations the recovery of metals from the plant tissues is potentially economical [28]. Recovery of even lower
Mechanisms and possible ligand complexes that aid the transport and sequestration of toxic pollutants. (a) The ZIP transporter families can bring nutrient and toxic metal ions through the plasma membrane (PM) into roots and/or through the tonoplast membrane (TM) into vacuoles. Mutations in the Arabidopsis FERRIC CHELATE REDUCTASE (FRO2) (Figure 2) or other genes that result in iron starvation increase ZIP transporter activity and metal uptake. (b) Secreted citrate can form tetrahedral metal ion complexes that block Al(III) and possibly Ni(II) transport into roots. (d) The soil additive EDTA can form hexahedral metal ion complexes with metals (Pb(II), Fe(II)) that enhance root uptake and translocation throughout the plant. Naturally secreted organic acids, such as mucogenic and avenic acids, may use the same mechanism to scavenge acids for nutrient metals. (b) Phytochelatins, in this case a ternary PC3, form tetrahedral complexes with thiol-reactive metals like cadmium (Cd(II)) enhancing tolerance. These structures should aid in the transport into and sequestration of metals in vacuoles via the glutathione-8-conjugate pump (GCP). With other metals such as Cu(II) and Zn(II), the α-carboxyl groups of PCs may participate in forming very different metal–ligand structures (not pictured). (e) Histidine (His) can participate in forming tetrahedral metal ion complexes with Ni(II) that aid in uptake, transport, hyperaccumulation, and tolerance. Water forms the fourth ligand in this model. (f) Transport of sulfate and selenate through the PM is plastic: membrane (CM) is enhanced by formation of adenosine phosphosulfate (ADP-S) and adenosine phosphoselenate (ADP-Se), respectively, which is catalyzed by ATP sulfurylase (APS). (g) Toxic metals and large organics can be complexed with glutathione and then pumped by the GCP into vacuoles or out of roots.

Hyperaccumulation of elements may involve all three of the processes outlined above, (i.e. adsorption, transport and translocation) but it also requires large sinks in which to store the pollutant. The most notable mechanisms for sequestering thio-reactive metals involve two classes of cysteine-rich peptides, the metallothioneins (MTs) and phytochelatins (PCs). Metals such as Ag(I), Au(III), Cd(II), Cu(II), Hg(II), and Ni(II) are sequestered by bonding with organic sulfur (R-SH) on the cysteine residues of these peptides. In vitro, MTs form metal-ligand complexes with a specificity correlating with the thiolate series for cation binding (Bi>Ag>Cu> Cd>Pb> Zn) [29], although the precise specificity of MTs and PCs to caco is not well defined. Plants have a complex family of MT genes [30,31] encoding peptides that are generally composed of 60–80 amino acids and contain 9–16 cysteine residues. The MTs are thought to primarily chaperone nutrient metals to their various necessary roles (e.g. insertion into an enzymatic center during protein folding) [32]. MTs can, however, also protect plants from the effects of toxic metal ions and aid in their accumulation. For example, transgenic over-expression of the 32 amino acid metal-binding α-domain of mouse MT in tobacco confers moderate levels of Cd(II) resistance and accumulation [33,34]. MT–metal complexes can be glutathionated [35], suggesting that these complexes might be transported into vacuoles for long term sequestration (see below).
The PCs are non-ribosomally synthesized peptides with the structure γ-Glu-Cys-X-Gly (Figure 2), where X is generally β-Ala or Ser. PCs form ligand complexes with nutrient and toxic metals and aid their transport into vacuoles [36], where the metals are sequestered. One possible structure of a PC (n=3, X=Gly, PC3) binding three Cd(II) ions is proposed in Figure 1 [37]. Mutations in the synthesis of PCs or their precursor tripeptide, glutathione (GSH, n=1 and X=Gly), are hyper-susceptive to Cd(II) [38,39] and many other sulfur-reactive metals [40], demonstrating the role of PCs in protecting plants from toxic metals. Further evidence of this role comes from the over-expression of a bacterial glutathione synthetase (GS) by Brassica juncea [41••]. These transgenic B. juncea plants have higher GSH and PC concentrations and increased Cd(II) tolerance and accumulation relative to controls. Plant, fungal, and animal genes encoding phytochelatin synthase (PS) have recently been identified [42•,43•]. Plant PS synthesis is increased several-fold upon exposure to Cd(II) in the medium, suggesting that PS has a direct role in toxic metal metabolism. Over-expression of plant PS in transgenic yeast increases tolerance and accumulation of Cd(II) [42•]. Clearly, manipulation of GSH and PC concentrations has significant potential for increasing the accumulation of toxic metals by plants.

The study of natural plant hyperaccumulators has a long history. Distinct species with unusual heavy metal requirements as a result, the fish-eating predatory animals and humans at the top of the food chain suffer MeHg poisoning [48,53]. Our laboratory used two genes from the well-characterized bacterial mer operon, merA and merB, to engineer a mercury transformation and remediation system in plants [2•,3•]. The bacterial merA gene encodes an NADPH-dependent mercuric ion reductase that converts ionic mercury (Hg[II]) to elemental, metallic mercury (Hg[0]) as shown in Figure 2. Metallic mercury is nearly two orders of magnitude less toxic than ionic mercury and is readily eliminated because of its volatility. Diverse plant species expressing merB constitutively are resistant to at least ten-times greater concentrations of Hg(II) than those that kill non-transgenic controls [3•,52,53•,54]. These plants volatilize and possibly transpire Hg(0) from their tissues, and they accumulate far less mercury than control plants grown in low concentrations of mercury [9]. Transgenic plants expressing merB out-perform wild-type plants on mercury contaminated soil [9] as shown in Figure 3. Because MeHg is synthesized at aquatic sites, eliminating all forms of mercury contamination from lakes, rivers, and wetlands should largely prevent MeHg formation. Because plants are autotrophic and have massive root systems, they should be able to increase rate at which mercury is eliminated by orders of magnitude over those catalyzed by endogenous bacteria.

Transformation of toxic elements

Another natural mechanism that offers exciting phytoremediation possibilities is the transformation of toxic elements into relatively harmless forms. Many elements (e.g. arsenic, mercury, iron, selenium, chromium) can exist in a variety of states, including different cationic and oxyanionic species and thi- and organo-metallics. These forms vary widely in their transport and accumulation in plants and in their toxicity to humans and other life forms. Mercury offers perhaps the best-understood example of the dangers inherent in one particular species of a heavy metal. Mercury primarily enters the environment either as liquid Hg(0) from industrial and defense-related accidents; or as mercury species (Hg(II)) bound to particulate matter from burning coal and trash or from volcanic activity, and as complex chemical derivatives released in industrial effluents [3•]. Although Hg(II) is relatively toxic, it and Hg(0) have seldom been involved in serious incidents of human mercury poisoning without first being transformed into methylmercury (MeHg) [48]. The world first became aware of the extreme dangers of methylmercury (MeHg) in the 1950s after a large, tragic incident of human mercury poisoning at Minamata Bay, Japan [49]. In aquatic sediments, various mercury species are efficiently converted to MeHg by anaerobic bacteria [50]. Unfortunately, MeHg is biomagnified by several orders of magnitude and has a greater toxicity than any other natural mercury compound [3•]. As a result, the fish-eating predatory animals and humans at the top of the food chain suffer MeHg poisoning [48,53].
so that the final product of the bacterial synthesis is not only the most toxic natural form of mercury, but is biomagnified efficiently in the food chain. Mercury is less toxic as ionic mercury (Hg(II)) and lead toxic as reduced and volatile metallic mercury (Hg(0)). Hg(0) becomes toxic after reoxidation to Hg(II). The bacterial enzyme MerB and MerD catalyze the detoxification of methyl and ionic mercury, respectively. This pathway has been engineered to work efficiently in plants. ATP sulfurylase catalyzes the committed step in sulfate and selenate uptake, forming ADP-S and ADP-Se, respectively. Selenium is most toxic when incorporated into amino acid analogues and least toxic as volatile dimethylselenide. Endogenous enzymes carry out these various reactions to different extents in distinct plant species. The reduced intermediate selenite (SeO3^2–) is more efficiently metabolized into organic forms than selenate (SeO4^2–).

The chemical transformation of other toxic elemental pollutants also leads to their remediation. Selenium buildups up in irrigation water and contaminates hundreds of square miles of wetland in the western US. Selenium and sulfur are nutrients with very similar chemical properties and their uptake and assimilation proceed through common pathways. Although sulfur is required by all organisms in relatively large concentrations, high levels of selenium are usually toxic. The assimilation of sulfate and selenate is activated by ATP sulfurylase (Figures 1 and 2). Selenate is converted to adenosine phosphoselenate (ADP-Se), which is subsequently reduced to selenite. Over-expression of the Arabidopsis plastidic ATP sulfurylase (APSY) in transgenic Indian mustard results in an increased uptake and assimilation of selenate, increased reduction to selenite, and greater tolerance of selenate [57].

Two plant pathways appear to dominate the natural remediation and/or detoxification of selenium. It should be noted that in most species selenium is most toxic when it is metabolized into analogues of cysteine and methionine and incorporated into proteins. Intracellular, one detoxification mechanism found in Astragalus [58], a genus with...
particularly high selenium tolerance levels, involves the hyperaccumulation of large amounts of a seleno-amino-acid into proteins. *Astragalus* species have a specific selenocysteine methyltransferase that has a strong specificity for selenate over sulfate (Figure 2). The final metabolic product of this pathway is the amino acid Se-methyl selenocysteine, which is incorporated into protein metabolism. Fe(III) is the major form of iron in typical oxidized soils, but it is essentially unavailable to plants called the glutathione-S-conjugate pump [65•,66] that can be transported out of cells [67] or into vacuoles [68]. The accumulation of toxic organics in plant vacuoles should favor their subsequent degradation.

Although our basic knowledge of the degradation of organics pollutants by plants lags far behind that of animals and bacteria, plants can transform and mineralize a wide variety of complex organics. These endogenous activities result from the ability of plants to synthesize, rearrange, and detoxify the most complex array of biochemicals and biopolymers of any living organisms (e.g. complex carbohydrates such as cellulose and lignin; flavanol and peptide-metal complexes such as phytochelatins (Figure 1). This system recognizes oxidized diglutathione (GS-GS), glutathione conjugates of organics, conjugates of diverse high-molecular-weight toxic organic xenobiotics, and nutrient uptake, the FRO2 mechanism suggests an alternative, elegant approach to manipulating the redox state of toxic metals at the root surface. The FRO2 family of ATP-binding cassette (ABC) transporters often called the glutathione-S-conjugate pump [65•,66] (Figure 1). This system recognizes oxidized diglutathione (GS-GS), glutathione conjugates of organics, conjugates of diverse high-molecular-weight toxic organic xenobiotics, and peptide-metal complexes such as phytochelatins [65•,66]. Herbicides and endogenous organic compounds alike can be transported out of cells [67] or into vacuoles [68]. The accumulation of toxic organics in plant vacuoles should favor their subsequent degradation.

Although our basic knowledge of the degradation of organics pollutants by plants lags far behind that of animals and bacteria, plants can transform and mineralize a wide variety of complex organics. These endogenous activities result from the ability of plants to synthesize, rearrange, and detoxify the most complex array of biochemicals and biopolymers of any living organisms (e.g. complex carbohydrates such as cellulose and lignin; flavanol and peptide-metal complexes such as phytochelatins (Figure 1). This system recognizes oxidized diglutathione (GS-GS), glutathione conjugates of organics, conjugates of diverse high-molecular-weight toxic organic xenobiotics, and peptide-metal complexes such as phytochelatins [65•,66]. Herbicides and endogenous organic compounds alike can be transported out of cells [67] or into vacuoles [68]. The accumulation of toxic organics in plant vacuoles should favor their subsequent degradation.

Although our basic knowledge of the degradation of organics pollutants by plants lags far behind that of animals and bacteria, plants can transform and mineralize a wide variety of complex organics. These endogenous activities result from the ability of plants to synthesize, rearrange, and detoxify the most complex array of biochemicals and biopolymers of any living organisms (e.g. complex carbohydrates such as cellulose and lignin; flavanol and peptide-metal complexes such as phytochelatins (Figure 1). This system recognizes oxidized diglutathione (GS-GS), glutathione conjugates of organics, conjugates of diverse high-molecular-weight toxic organic xenobiotics, and peptide-metal complexes such as phytochelatins [65•,66]. Herbicides and endogenous organic compounds alike can be transported out of cells [67] or into vacuoles [68]. The accumulation of toxic organics in plant vacuoles should favor their subsequent degradation.

Although our basic knowledge of the degradation of organics pollutants by plants lags far behind that of animals and bacteria, plants can transform and mineralize a wide variety of complex organics. These endogenous activities result from the ability of plants to synthesize, rearrange, and detoxify the most complex array of biochemicals and biopolymers of any living organisms (e.g. complex carbohydrates such as cellulose and lignin; flavanol and peptide-metal complexes such as phytochelatins (Figure 1). This system recognizes oxidized diglutathione (GS-GS), glutathione conjugates of organics, conjugates of diverse high-molecular-weight toxic organic xenobiotics, and peptide-metal complexes such as phytochelatins [65•,66]. Herbicides and endogenous organic compounds alike can be transported out of cells [67] or into vacuoles [68]. The accumulation of toxic organics in plant vacuoles should favor their subsequent degradation.

Although our basic knowledge of the degradation of organics pollutants by plants lags far behind that of animals and bacteria, plants can transform and mineralize a wide variety of complex organics. These endogenous activities result from the ability of plants to synthesize, rearrange, and detoxify the most complex array of biochemicals and biopolymers of any living organisms (e.g. complex carbohydrates such as cellulose and lignin; flavanol and peptide-metal complexes such as phytochelatins (Figure 1). This system recognizes oxidized diglutathione (GS-GS), glutathione conjugates of organics, conjugates of diverse high-molecular-weight toxic organic xenobiotics, and peptide-metal complexes such as phytochelatins [65•,66]. Herbicides and endogenous organic compounds alike can be transported out of cells [67] or into vacuoles [68]. The accumulation of toxic organics in plant vacuoles should favor their subsequent degradation.

Although our basic knowledge of the degradation of organics pollutants by plants lags far behind that of animals and bacteria, plants can transform and mineralize a wide variety of complex organics. These endogenous activities result from the ability of plants to synthesize, rearrange, and detoxify the most complex array of biochemicals and biopolymers of any living organisms (e.g. complex carbohydrates such as cellulose and lignin; flavanol and peptide-metal complexes such as phytochelatins (Figure 1). This system recognizes oxidized diglutathione (GS-GS), glutathione conjugates of organics, conjugates of diverse high-molecular-weight toxic organic xenobiotics, and peptide-metal complexes such as phytochelatins [65•,66]. Herbicides and endogenous organic compounds alike can be transported out of cells [67] or into vacuoles [68]. The accumulation of toxic organics in plant vacuoles should favor their subsequent degradation.

Although our basic knowledge of the degradation of organics pollutants by plants lags far behind that of animals and bacteria, plants can transform and mineralize a wide variety of complex organics. These endogenous activities result from the ability of plants to synthesize, rearrange, and detoxify the most complex array of biochemicals and biopolymers of any living organisms (e.g. complex carbohydrates such as cellulose and lignin; flavanol and peptide-metal complexes such as phytochelatins (Figure 1). This system recognizes oxidized diglutathione (GS-GS), glutathione conjugates of organics, conjugates of diverse high-molecular-weight toxic organic xenobiotics, and peptide-metal complexes such as phytochelatins [65•,66]. Herbicides and endogenous organic compounds alike can be transported out of cells [67] or into vacuoles [68]. The accumulation of toxic organics in plant vacuoles should favor their subsequent degradation.

Although our basic knowledge of the degradation of organics pollutants by plants lags far behind that of animals and bacteria, plants can transform and mineralize a wide variety of complex organics. These endogenous activities result from the ability of plants to synthesize, rearrange, and detoxify the most complex array of biochemicals and biopolymers of any living organisms (e.g. complex carbohydrates such as cellulose and lignin; flavanol and peptide-metal complexes such as phytochelatins (Figure 1). This system recognizes oxidized diglutathione (GS-GS), glutathione conjugates of organics, conjugates of diverse high-molecular-weight toxic organic xenobiotics, and peptide-metal complexes such as phytochelatins [65•,66]. Herbicides and endogenous organic compounds alike can be transported out of cells [67] or into vacuoles [68]. The accumulation of toxic organics in plant vacuoles should favor their subsequent degradation.

Although our basic knowledge of the degradation of organics pollutants by plants lags far behind that of animals and bacteria, plants can transform and mineralize a wide variety of complex organics. These endogenous activities result from the ability of plants to synthesize, rearrange, and detoxify the most complex array of biochemicals and biopolymers of any living organisms (e.g. complex carbohydrates such as cellulose and lignin; flavanol and peptide-metal complexes such as phytochelatins (Figure 1). This system recognizes oxidized diglutathione (GS-GS), glutathione conjugates of organics, conjugates of diverse high-molecular-weight toxic organic xenobiotics, and peptide-metal complexes such as phytochelatins [65•,66]. Herbicides and endogenous organic compounds alike can be transported out of cells [67] or into vacuoles [68]. The accumulation of toxic organics in plant vacuoles should favor their subsequent degradation.

Although our basic knowledge of the degradation of organics pollutants by plants lags far behind that of animals and bacteria, plants can transform and mineralize a wide variety of complex organics. These endogenous activities result from the ability of plants to synthesize, rearrange, and detoxify the most complex array of biochemicals and biopolymers of any living organisms (e.g. complex carbohydrates such as cellulose and lignin; flavanol and peptide-metal complexes such as phytochelatins (Figure 1). This system recognizes oxidized diglutathione (GS-GS), glutathione conjugates of organics, conjugates of diverse high-molecular-weight toxic organic xenobiotics, and peptide-metal complexes such as phytochelatins [65•,66]. Herbicides and endogenous organic compounds alike can be transported out of cells [67] or into vacuoles [68]. The accumulation of toxic organics in plant vacuoles should favor their subsequent degradation.

Although our basic knowledge of the degradation of organics pollutants by plants lags far behind that of animals and bacteria, plants can transform and mineralize a wide variety of complex organics. These endogenous activities result from the ability of plants to synthesize, rearrange, and detoxify the most complex array of biochemicals and biopolymers of any living organisms (e.g. complex carbohydrates such as cellulose and lignin; flavanol and peptide-metal complexes such as phytochelatins (Figure 1). This system recognizes oxidized diglutathione (GS-GS), glutathione conjugates of organics, conjugates of diverse high-molecular-weight toxic organic xenobiotics, and peptide-metal complexes such as phytochelatins [65•,66]. Herbicides and endogenous organic compounds alike can be transported out of cells [67] or into vacuoles [68]. The accumulation of toxic organics in plant vacuoles should favor their subsequent degradation.
flavonoid pigments; aromatic plant protectants; diverse fatty acids; isoprenoids, steroids and carotenoids; and plant hormones). Three exciting examples demonstrate the potential of plant metabolic systems as remediators of toxic xenobiotics.

First, plants contain uncharacterized aliphatic dehalogenases that are capable of degrading TCE [69,70]. Among a long list of industrial solvents that pose a threat to wildlife and humans, TCE is perhaps the most widely distributed environmental pollutant of ground water and soils. Halogenated compounds, such as TCE, are among the most difficult to metabolize and are usually toxic and carcinogenic. Plants grown at polluted sites are known to extract TCE, efficiently transpire it, and enhance the degradation of TCE in the rhizosphere by feeding biodegrading bacteria with root exudates [69,70]. It is only recently becoming clear, however, that plant enzymes play a direct role in the degradative process. Careful mass-balance and isotopic-labeling experiments demonstrate that axenically grown hybrid poplars (Populus sp.) actively take up TCE and degrade it to trichloroethanol, chlorinated acetates, and finally CO₂ (Figure 2) [71•]. In one experiment with axenic poplar tissue culture cells, >10% of the TCE was mineralized to CO₂ within 10 d [71•]. These data suggest the presence of an oxidative degradation pathway in plants, that is quite different from the reductive one generally found in bacteria [72].

Second, plants can degrade nitroaromatic compounds that are highly toxic and carcinogenic, and notoriously difficult to metabolize. The explosive TNT (2,4,6-trinitrotoluene) and a large family of related nitro-substituted organic compounds (e.g. hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX] and glycerol dinitrate or nitroglycerin [GTN]) are used in munitions. They contaminate thousands of square kilometers of land and dozens of miles of rivers near production, storage, and disposal facilities. A wide variety of plant species from diverse families appear to degrade TNT (Figure 2) although only a few species do so efficiently [73,74•]. The final products of these plant degradation pathways appear to be CO₂, NH₄, and nitrate. Through degradation appears to proceed through multiple complex pathways, the products of reductive mechanisms such as triminotoluene predominates (Figure 2) [74•,75]. For example, axenically grown Microphyllum aquaticum plants and Catharanthus roseus hairy root cultures both partially degrade TNT and release degradation intermediates into their growth medium [75]. Axenic cell cultures of sugarcane and other plants degrade GTN to the expected intermediates glycerol dinitrate (GDN) and glycerol mononitrate (GMN) [76]. Hairy root cultures of Catharanthus roseus were capable of the degrading most of the 25 ppm of TNT added to culture medium within a few days [77]. The specific activities of these plant enzymes may be no greater than those observed in extracts from bacterial TNT-degrading species, and none of the genes for these plant enzymes has been identified. Nevertheless, plants control most of the energy in an ecosystem, and usually account for several orders of magnitude greater biomass than any few bacterial species in the soil. Thus, the potential contribution of selected plants to the degradation of TNT in a contaminated ecosystem may be orders of magnitude greater than that of bacteria.

In a striking demonstration of the potential of transgenic plant technologies to enhance the natural capacities of plants, a bacterial NADPH-dependent nitroreductase greatly increased GTN-degrading activity when expressed in tobacco [78••]. Transgenic seedlings were about ten times more tolerant of GTN and TNT than their wild-type progenitors. Preliminary evidence suggests that these plants were able to break down both GTN and its first degradation product, glycerol dinitrate, twice as fast as the wild-type controls. It is not clear what fraction of these nitro-substituted compounds is completely mineralized. Nevertheless, such enhancements in degradation efficiency increase the feasibility of applying phytoremediation to toxic nitroaromatic pollutants.

Third, PCBs are among the worst pollutants because of their toxicity, carcinogenicity, wide distribution, and slow biodegradation in the environment. Axenic cultures of some plant species have been shown to efficiently degrade several classes of PCBs [79]. For example, sterile cultures of Solanum nigrum degrade several PCB congeners relatively efficiently [80]. Wide variation in activity levels is seen among plant species and between developmental stages. PCBs with the most highly chlorinated benzene rings appear to be the most difficult for both bacteria and plants to break down. The metabolic basis for the degradation of PCBs by plants has not been well characterized or quantified. Armed with the dozens of bacterial genes known to enhance PCB degradation, the potential of selected engineered plant species to remediate PCBs should be revealed in the next few years.

Conclusions

Initial explorations of the natural plant mechanisms effecting the phytoremediation of elemental and organic pollutants suggest great promise for the use of plants in large-scale environmental clean-up efforts. While elegant transport studies have been performed for Gdh; Fe(II), Ni(II), Selenate, Zn(II) and a few large organic xenobiotics in a few isolated plant species, the function of hundreds of diverse plant transporters that are central to phytoremediation remain uncharacterized. Preliminary data on TCE and TNT degradation suggest that plants can degrade highly toxic and metabolically resistant organics. The over-expression of several plant and bacterial genes in transgenic plants has greatly enhanced these natural plant remediation systems. The small number of laboratories working on these problems at present cannot, however, hope to impact global pollution. Greatly expanded research programs focused on the basic and applied problems effecting each class of...
pollutants are needed for significant progress to be made. In particular, more quantitative data from mass-balance studies are needed to determine the rate-limiting steps in the mineralization of organic pollutants. Once the rate-limiting steps in uptake, transport, or transformation have been identified, more informed construction of transgenic plants expressing plant, animal, or bacterial genes will result in dramatic improvements in phytoremediation capabilities.

Acknowledgements
Gay Graham, Martin Sunner, Scott Blaisd, Norman Ture, Jim Ostrom, Robert Scott, and Mary-Lou Graciano gave helpful scientific and editorial advice. Kari Pinson helped with manuscript preparation. Clayton Rugh and Andrew Robson kindly provided a new photograph summarizing their previously published work [9] (Figure 3). Grants from the Department of the Environment Canada, Environmental Management Sciences Program (DE-R06-96ER25257), and National Science Foundation (IBB 951547) supported this work.

References and recommended reading
Papers of particular interest, published within the annual period of review, have been highlighted as: • of special interest •• of outstanding interest
• An excellent review on the uses of plants to clean-up the environment.
• This paper examines the phytoremediation of mercury pollution as an alteration to more commonly used physical methods.
Phytoextraction of toxic elemental and organic pollutants Meagher 161

Pb concentration in the medium. Shoot Pb concentration is proportional to shoot EDTA levels and xylem sap shows the presence of Pb-EDTA complexes.


56. Plants expressing a bacterial organomercury (case, merr, are resistant to a wide range of toxic levels of the environmental toxicology. Only a threshold level of metal ion appears to be necessary to confer high-level resistance, suggesting that complex kink and cell biological parameters effect resistance.


58. Plants expressing the two bacterial genes, merrA and merrB, are resistant to extremely high levels of the environmental toxin methylmercury. They volatilize 100-1000 times more Hg(0) than wild-type plants or controls expressing either gene alone. MerrA enzyme levels appear to be rate-limiting, but MerrB enzyme levels and biological, chemical, and kinetic parameters may play a significant role.


60. Plants expressing a modified bacterial merA gene were overexpressed in Indian mustard. APR5 activates not only sulfate but also selenium uptake, and this appears to be a rate-limiting step for selenium reduction in plants and for plant tolerance. Transgenic plants accumulate twice as much Se in shoots than do controls.


dependent kinetic studies showed that sequestration was taken up twice as fast as sequestration. Sequestration was rapidly translocated to the shoot, away from the root which is the site of volatilization, ten times more efficiently than sequestration.


65. AMRP is the Arabidopsis thaliana homologue of the human multidrug resistant protein, MDR. The Arabidopsis gene AMRPA is a homologue of the yeast gene MDRI and yeast multidrug resistance factor (YMR), which are ATP-binding-cassette-type GTPases. A calcium-sensitive yeast mutant lacking endogenous GDP is complemented by AMRPA and defines data is present to show that AMRPA is a GCP. Plant J 1999, 18:267-272.


