第六章:二次型
|
考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1. 了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念。 2. 了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。 3. 理解正定二次型、正定矩阵的概念,并掌握其判别法。 |
考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1. 了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念。 2. 了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。 3. 理解正定二次型、正定矩阵的概念,并掌握其判别法。 |
对比:无变化
|
|
第一章:随机事件和概率 |
考试内容 随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求 1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。 2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等。 3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。 |
考试内容 随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求 1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。 2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等。 3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。 |
对比:无变化 |
|
第二章:随机变量及其分布 |
考试内容 随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布 考试要求 1、理解随机变量的概念,理解分布函数的概念及性质;会计算与随机变量相联系的事件的概率。 2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用。 3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。 4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为

。 5、会求随机变量函数的分布。 |
考试内容 随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布 考试要求 1、理解随机变量的概念,理解分布函数的概念及性质;会计算与随机变量相联系的事件的概率。 2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布()、几何分布、超几何分布、泊松(Poisson)分布及其应用。 3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。 4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为

。 5、会求随机变量函数的分布。 |
对比:新大纲给出了分布的标准字母表示,可能意味着考生应该记忆并掌握这种标准的写法。 |
|
第三章:多维随机变量的分布 |
考试内容 多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布 考试要求 1、理解多维随机变量的分布函数的概念和基本性质。 2、理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度。掌握两维随机变量的边缘分布和条件分布。 3、理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系。 4、掌握二维均匀分布和二维正态分布,理解其中参数的概率意义。 5、会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布。 |
考试内容 多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布 考试要求 1、理解多维随机变量的分布函数的概念和基本性质。 2、理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度。掌握两维随机变量的边缘分布和条件分布。 3、理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系。 4、掌握二维均匀分布和二维正态分布,理解其中参数的概率意义。 5、会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布。 |
对比:新大纲给出了分布的标准字母表示,可能意味着考生应该记忆并掌握这种标准的写法。 |