土壤重金属污染生物修复的研究进展

作者:佚名    文章来源:科学网    点击数:    更新时间:2004-4-21

 

沈振国 陈怀满

摘要 土壤重金属污染的生物修复是污染整治的重要手段之一,是目前世界范围内的研究热点,亦是目前仅见的土壤污染治理的环境友好技术。主要评述了重金属污染土壤的植物修复的原理、类型与技术,植物修复的优点,微生物修复等进展情况。并对今后的研究重点进行了简要的讨论。
关键词 生物修复 植物修复 重金属 土壤污染

Bioremediation of Heavy Metal Polluted Soils

Shen Zhenguo et al
(Institute of Soil Science, Chinese Academy of Sciences NANJING 210008)

Abstract Phytoremediation of heavy metal contaminated soils, by using plants to make soil contaminants nontoxic, offers a cost-effective “green” method for soil remediation. There are now four subsets of this technology applicable to soil remediation: (1) phytoextraction, using hyperaccumulator plants or high biomass metal accumulating plants to remove toxic metals from soil; (2) phytovolatilization, using plants to stimulate volatilization of metals from soil or plant surface; (3) phytofiltration, using plants to absorb, precipitate and concentrate toxic metals from water; and (4) phytostabilization, using plants to transform soil metals from toxic forms to less toxic forms. The use of plants to clean soils contaminated by toxic metals shows great potentiality. Also discussed are some important advances, made in the past few years, in making use of microorganisms for remediation of heavy metal contaminated soils.
Key words 
bioremediation, heavy metal, phytoremediation, soil pollution

国家自然科学基金(29977009)、国家科技攻关任务(96-920-13-03)、中国科学院土壤圈物质循环开放研究实验室基金资助项目
通讯联系人
沈振国(中国科学院南京土壤研究所,南京 210008) 
陈怀满(中国科学院南京土壤研究所,南京 210008)

参考文献

1,Chaney RL, Malik M, Li YM, et al. Phytoremediation of soil metals. Current Opinion in Biotechnology, 1997,8:279-284
2,Salt DE, Smith RD, Raskin I. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 1998,49:643-648
3,沈振国,刘友良.超量积累重金属植物研究进展.植物生理学通讯,1998,34(2):133-139
4,Blaylock MJ, Salt DE, Dushenkov S, et al. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents. Environmental Science and Technology, 1997,31:860-865
5,Lasat MM, Fuhrmann M, Ebbs SD, et al. Phytoremediation of a radiocesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. Journal Environmental Quality, 1998,27:165-169
6,Zhao FJ, Shen ZG, McGrath SP. Solubility of zinc and interactions between zinc and phosphorus in the hyperaccumulaot Thlaspi caerulescens. Phant, Cell & Environment, 1998,21:108-114
7, Shen ZG, Zhao FJ ,McGrath SP. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspiochroleucum. Plant, Cell and Environment, 1997, 20:898-906
8,Kramer U, Cotter-Howells JD, Charnock JM, et al. Free histidine as a metal chelator in plants that accumulate nickel. Nature, 1996,379:635-638
9,Baker AJM, Reeves RD, Hajar ASM. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytologist, 1994,127:61-68
10,Brown SL, Chaney RL, Angle JS, et al. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil. Journal of Environmental Quality, 1994,23:1151-1157
11,Robisnon BH, Brooks RR, Howes AW, et al. The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. Journal of Geochemical Exploration, 1997,60:115-126
12,McGrath SP, Shen ZG, Zhao FJ, Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant and Soil, 1997,188:153-159
13,Baker AJM, McGrath SP, Sidoli CMD, et al. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling,1994, 11:41-49
14,Ebbs SD, Lasat MM, Brady DJ, et al. Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality, 1997,26:1424-1430
15,沈振国,刘友良,陈怀满.螯合剂对重金属超量积累植物Thlaspi caerulescens 锌、铜、锰和铁吸收的影响.植物生理学报,1998,24:340-346
16,Wu J, Hsu FC, Cunningham SD. Chelate-Assisted Pb phytoextraction:Pb availability, uptake and translocation constraints. Environmental Science and Technology, 1999,33:1898-1904
17,Huang JW, Cunningham SD. Lead phytoextraction: species variation in lead uptake and translocation. New Phytologist, 1996,134:75-84
18,Dushenkov S, Mikheev A, Prokhnevsky A, et al. Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environmental Science and Technolgy, 1999,33:469-475
19,Banuelos GS, Cardon G, Macckey B, et al. Boron and selenium removal in boron-laden soils by 4 sprinkler irrigated plant-speies. Journal of Environmental Quality, 1993,22:786-792
20,de Souza MP, Pilon-Smits EAH, Lytle CM, et al. Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiology, 1998,117:1487-1494
21,Zayed AM, Lytle CM, Terry N. Accumulation and volatilization of different chemical species of selenium by plants. Planta, 1998,206:284-292
22,Rugh CL, Wilde HD, Stacck NM, et al. Mercuric ion reduction and resistance in trangenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proceedings of the National Academy of Sciences of the United States of America, 1996,93:3182-3187
23,Cotter-Howells JD, Caporn S. Remediation of contaminated land by formation of heavy metal phosphates. Applied Geochemistry, 1996,11:335-342
24,Lovley DR. Microbial reduction of iron, manganese, and other metals. Advances in Agronomy, 1995,54:175-231
25,Cantafio AW, Hagen KD, Lewis GE, et al. Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Applied and Environmental Microbiology, 1996,62:3298-3303




文章录入:anny    责任编辑:anny 

精彩图片
文章评论
数据载入中,请稍后……
  请您注意:
 ·请遵守中华人民共和国有关法律法规、《全国人大常委会关于维护互联网安全的决定》及《互联网新闻信息服务管理规定》。
 ·请注意语言文明,尊重网络道德,并承担一切因您的行为而直接或间接引起的法律责任。
 ·中国环境生态网文章跟帖管理员有权保留或删除其管辖留言中的任意内容。
 ·您在中国环境生态网发表的言论,中国环境生态网有权在网站内转载或引用。
 ·发表本评论即表明您已经阅读并接受上述条款,如您对管理有意见请向文章跟帖管理员反映。

绿色进行时
推荐文章
研究称全球变暖毁灭远古雨林
隧道内发现的蕨类植物美国研究人员在伊利诺伊州一处煤矿发现…
绿色生活
驴行天下

| 设为首页 | 加入收藏 | 关于我们 | 广告服务 | 联系站长 | 友情链接 | 版权申明 | 管理登录 |