群落的种类组成(二)

作者:国庆喜    文章来源:生态空间    点击数:    更新时间:2004-11-27

    三、种的多样性

    生物多样性(biodiversity)是指生物中的多样化和变异性以及物种生境的生态复杂性,它包括植物、动物和微生物的所有种及其组成的群落和生态系统。生物多样性可以分为遗传多样性物种多样性生态系统多样性3个层次。遗传多样性指地球上生物个体中所包含的遗传信息之总和;物种多样性指地球上生物有机体的多样化;生态系统多样性涉及的是生物圈中生物群落、生境与生态过程的多样化。

    (一)多样性的定义
    R.A.Fisher等人(1943)第一次使用种的多样性名词时,他所指的是群落中物种的数目和每一物种的个体数目。后来人们有时也用别的特性来说明种的多样性:比如生物量、现存量、重要值、盖度等。
    自从 MacArther(1957)的论文发表后,近几十年来讨论多样性的文章很多,归纳起来,通常种的多样性具有下面两种涵义:
    1. 种的数目或丰富度(species richness)
    指一个群落或生境中物种数目的多寡。Poole(1974)认为只有这个指标才是唯一真正客观的多样性指标。在统计种的数目的时候,需要说明多大的面积,以便比较。在多层次的森林群落中必须说明层次和径级,否则是无法比较的。
    2. 种的均匀度(species evenness or equitability)
    指一个群落或生境中全部物种个体数目的分配状况,它反映的是各物种个体数目分配的均匀程度,例如,甲群落中有100个个体,其中90个属于种A,另外10个属于种B。乙群落中也有100个个体,但种A、B各占一半。那末,甲群落的均匀度就比乙群落低得多。

    (二)多样性的测定
    测定多样性的公式很多,这里仅我们这里仅选取其中几种有代表性的作一说明。

    1. 丰富度指数
    由于群落中物种的总数与样本含量有关,所以这类指数应跟定为可比较的。生态学上用过的丰富度指数很多,现举几例。

    (1)Gleason(1922)指数:

     式中A为单位面积,S为群落中的物种数目。

    (2)Margalef(1951, 1957, 1958)指数:

    式中S为群落中的总种数,N为观察到的个体总数(随样本大小而增减)。

    2. 多样性指数
    多样性指数是反映丰富度和均匀度的综合指标。应指出的是,应用多样性指数时,具低丰富度和高均匀度的群落与具高丰富度与低均匀度的群落,可能得到相同的多样性指数。下面是两个最著名的计算公式:

    (1)辛普森多样性指数(Simpson's diversity index)
    辛普森在1949年提出过这样的问题:在无限大小的群落中,随机取样得到同样的两个标本,它们的概率是什么呢?如在加拿大北部森林中,随机采取两株树标本,属同一个种的概率就很高。相反,如在热带雨林随机取样,两株树同一种的概率很低,他从这个想法出发得出多样性指数。用公式表示为:
    辛普森多样性指数=随机取样的两个个体属于不同种的概率
    =1-随机取样的两个个体属于同种的概率

    设种i的个体数占群落中总个体数的比例为Pi,那么,随机取种i两个个体的联合概率就为。如果我们将群落中全部种的概率合起来,就可得到辛普森指数D,即

    式中,S为物种数目。
    辛普森多样性指数的最低值是0,最高值是(1-1/s)。前一种情况出现在全部个体均属于一个种的时候,后一种情况出现在每个个体分别属于不同种的时候。

    例如,甲群落中A、B两个种的个体数分别为99和1,而乙群落中A、B两个种的个体数均为50,按辛普森多样性指数计算,则甲、乙两群落的多样性指数分别为:

     乙群落的多样性高于甲群落。造成这两个群落多样性差异的主要原因是种的不均匀性,从丰富度来看,两个群落是一样的,但均匀度不同。

    (2)香农-威纳指数(Shannon-Weiner index)
    信息论中熵的公式原来是表示信息的紊乱和不确定程度的,我们也可以用来描述种的个体出现的紊乱和不确定性,信息量越大,不确定性也越大,因而多样性也就越高。其计算公式为:

    式中S为物种数目,Pi为属于种i的个体在全部个体中的比例,H为物种的多样性指数。公式中对数的底可取2,e和10,但单位不同,分别为nit,bit和dit。若仍以上述甲、乙两群落为例计算,则

    可见,乙群落的多样性更高一些,这与用辛普森指数计算的结果是一致的。

    香农-威纳指数包含两个因素:其一是种类数目,即丰富度;其二是种类中个体分配上的均匀性(evenness)。种类数目越多,多样性越大;同样,种类之间个体分配的均匀性增加也会使多样性提高。

    在不同空间尺度范围内,区分清楚不同的多样性测度指标是十分有用的。通常多样性测度可以分为3个范畴:α-多样性、β-多样性和γ-多样性。
    α-多样性是在栖息地或群落中的物种多样性,其计算方法正如上面所叙述的一样。
    β-多样性是度量在地区尺度上物种组成沿着某个梯度方向从一个群落到另一个群落的变化率。它可以定义为沿着某一环境梯度物种替代的程度或速率、物种周转率、生物变化速率等。β-多样性还反映了不同群落间物种组成的差异,不同群落或某环境梯度上不同点之间的共有种越少,β-多样性越大。测度群落β-多样性的重要意义在于:(1)它可以反映生境变化的程度或指示生境被物种分割的程度;(2)β-多样性的高低可以用来比较不同地点的生境多样性;(3)β-多样性与α-多样性一起构成了群落或生态系统总体多样性或一定地段的生物异质性。β-多样性的计算方法也有很多。
    γ-多样性反映的是最广阔的地理尺度,指一个地区或许多地区内穿过一系列的群落的物种多样性。

    四、物种多样性在空间上的变化规律

    1. 多样性随纬度的变化
    从热带到两极随纬度的增加,物种多样性有逐渐减少的趋势。此规律无论在陆地、海洋和淡水坏境,都有类似趋势,有充分的数据可以说明这一点。如北半球从南到北,随着纬度的增加,植物群落依次出现为热带雨林、亚热带常绿阔叶林、温带落叶阔叶林、寒温带针叶林、寒带苔原,伴随着植物群落有规律的变化,物种丰富度和多样性逐渐降低。当然也有例外,如企鹅和海豹在极地种类最多,而针叶树和姬蜂在温带物种最丰富。
    2. 多样性随海拔的变化
    如果在赤道地区登山,随海拔的增高,能见到热带、温带、寒带的环境,同样也能发现物种多样性随海拔增加而逐渐降低。
    3. 在海洋或淡水水体,物种多样性有随深度增加而降低的趋势
显然,在大型湖泊中,温度低、含氧少、黑暗的深水层,其水生生物种类明显低于浅水区;同样,海洋中植物分布也仅限于光线能透入的光亮区,一般很少超过30米。

    我国土地辽阔,南北跨越30余个纬度,由东南向西北干旱度逐渐增加,而西南则是高寒的青藏高原。张荣祖(1985)曾对我国陆生哺乳类(除翼手目外)的种数作过统计比较,发现如下规律:①种数与纬度关系。在北纬40~45°之间,平均种数最低,由40°往更低纬度地区,种数随纬度的降低而增加。②种数与内陆干旱地区的年降水量关系。随着年降水量由50毫米、上升到500毫米,平均种数亦随之而增加。③青藏喜马拉雅-横断山脉地区的种数与海拔高度的关系。随着海拔由850米上升到4750米,平均种数随海拔的升高而降低。

    五、决定多样性梯度的因素
    为什么热带地区生物群落的物种多样性高于温带和极地?这是由什么因素决定的?对此有不同学说,简介如下:
    1. 进化时间学说
    热带群落比较古老,进化时间较长,并且在地质年代中环境条件稳定,很少遭受灾害性气候变化(如冰期),所以群落的多样性较高。相反,温带和极地群落从地质年代上讲是比较年轻的,遭受灾难性气候变化较多,所以多样性较低。这就是说,所有群落随时间的推移其种数越来越多,比较年轻的群落可能没有足够的时间发展到高多样化的程度。有些事实能为此学说提供证据,如北半球白垩纪的浮游性有孔虫化石,也和现存有孔虫类一样,从热带到极地,物种多样性逐渐降低。
    2. 生态时间学说
    考虑更短的时间尺度,认为物种分布区的扩大也需要一定时间。根据这个学说,温带地区的群落与热带的相比是未充分饱和的。从热带扩展到温带不仅需要足够时间,有的种还可能被某种障碍所阻挡,另一些种可能已从热带进入温带。例如牛背鹭就是从非洲经南美而扩展到北美的。
    3. 空间异质性学说
    当人们由寒带经温带到热带旅行时就能得到一个明显的感觉,环境的复杂性随之而增加。物理环境越复杂,或叫空间异质性程度越高,动植物群落的复杂性也越高,物种多样性也越大。空间异质性有不同的尺度,属于宏观尺度的如地形的变化,山区的物种多样性明显地高于平原区,因为山区有更多样的生境,支持更多样的物种生存。岩石、土壤、植被垂直结构的变化是微观的空间异质性,群落中因这些变化使小生境丰富多样,物种多样性亦高。支持这种学说的证据如群落的垂直结构越复杂,那里的鸟类和昆虫的种类就越丰富。
    4. 气候稳定学说
    气候越稳定,变化越小,动植物的种类就越丰富,在生物进化的地质年代中,地球上唯有热带的气候可能是最稳定的。所以,通过自然选择,那里出现了大量狭生态位和特化的种类。热带有许多狭食性昆虫,有的甚至只吃一种植物。在高纬度地区,自然选择有利于具广适应性的生物。
    5. 竞争学说
    在物理环境严酷的地区,例如极地和温带,自然选择主要受物理因素控制,但在气候温和而稳定的热带地区,如热带,生物之间的竞争则成为进化和生态位分化的主要动力。由于生态位分化,热带动植物要求的生境条件往往很狭隘,其食性也较特化,物种之间的生态位重叠也比较多。因此,热带动植物较温带的常有更精细的适应性。
    6. 捕食学说
    因为热带的捕食者比其他地区多,促使Paine提出捕食说。他认为,捕食者将被食者的种群数量压到较低水平,从而减轻了被食者的种间竞争。竞争的减弱允许有更多的被食者种的共存。较丰富的种数又支持了更多的捕食者种类,Paine认为捕食者促进物种多样性的提高,对于每一营养级都适用。Paine在具岩石底的潮间带去除了顶极捕食动物(海星),使物种多样性由15种降为8种,实验证实了捕食者在维持群落多样性中的作用。
    7. 生产力学说
    如果其他条件相等,群落的生产力越高,生产的食物越多,通过食物网的能流量越大,物种多样性就越高。这学说从理论上讲是合理的,但现有实际资料有的不支持此学说。例如对丹麦和印度湖泊的枝角类种数与初级生产关系调查结果说明了相反的关系:初级生产力越高,枝角类多样性越低。

    上述7种学说,实际上包括6个因素,即时间、空间、气候、竞争、捕食和生产力。这些因素可能同时影响着群落的物种多样性,并且彼此之间相互作用。各学说之间往往难以截然分开,更可能的是在不同生物群落类型中,各因素及其组合在决定物种多样性中具不同程度的作用。




文章录入:ahaoxie    责任编辑:ahaoxie 

精彩图片
文章评论
数据载入中,请稍后……
  请您注意:
 ·请遵守中华人民共和国有关法律法规、《全国人大常委会关于维护互联网安全的决定》及《互联网新闻信息服务管理规定》。
 ·请注意语言文明,尊重网络道德,并承担一切因您的行为而直接或间接引起的法律责任。
 ·中国环境生态网文章跟帖管理员有权保留或删除其管辖留言中的任意内容。
 ·您在中国环境生态网发表的言论,中国环境生态网有权在网站内转载或引用。
 ·发表本评论即表明您已经阅读并接受上述条款,如您对管理有意见请向文章跟帖管理员反映。

绿色进行时
推荐文章
海豚尾巴是其高速游泳"发动机"
     据国外媒体报道,1936年科学家就发现发现海豚游泳速度高…
绿色生活
驴行天下

| 设为首页 | 加入收藏 | 关于我们 | 广告服务 | 联系站长 | 友情链接 | 版权申明 | 管理登录 |